Module 7: CNC Programming and Industrial Robotics Lecture 1

CNC programming: fundamentals

CNC part program contains a combination of machine tool code and machine-specific instructions. It consists of:

- a. Information about part geometry
- b. Motion statements to move the cutting tool
- c. Cutting speed
- d. Feed
- e. Auxiliary functions such as coolant on and off, spindle direction

In this lecture, first we will understand the coordinate systems of the machine tools and how they work.

1. CNC Machine Tool

Figure 7.1.1 Schematic of a CNC machine Tool

Figure 7.1.1 shows a schematic of a machine tool controlled by a computer. It consists of a Machine Control Unit (MCU) and machine tool itself. MCU, a computer is the brain of a CNC machine tool. It reads the part programs and controls the machine tools operations. Then it decodes the part program to provide commands and instructions to the various control loops of the machine axes of motion. The details regarding the construction and working of mechatronics based system have already been studied in last lectures.

CNC systems have a limitation. If the same NC program is used on various machine tools, then it has to be loaded separately into each machine. This is time consuming and involves repetitive tasks. For this purpose direct numerical control (DNC) system is developed. Figure 7.1.2 shows the schematic of a DNC system. It consists of a central computer to which a group of CNC machine tools are connected via a communication network. The communication is usually carried out using a standard protocol such as TCP/IP or MAP. DNC system can be centrally monitored which is helpful when dealing with different operators, in different shifts, working on different machines.

Figure 7.1.2 Direct numerical control (DNC) system

2. Axes of CNC machine tool

In CNC machine tool, each axis of motion is equipped with a driving device to replace the handwheel of the conventional machine tool. A axis of motion is defined as an axis where relative motion between cutting tool and workpiece occurs. The primary axes of motion are referred to as the X, Y, and Z axes and form the machine tool XYZ coordinate system. Figure 7.1.3 shows the coordinate system and the axes of motion of a typical machine tool. Conventionally machine tools are designated by the number of axes of motion they can provide to control the tool position and orientation.

2.1 Configuration of 2-axis machine tool

Figure 7.1.3 Axes of motion of a machine tool

If the machine tool can simultaneously control the tool along two axes, it is classified as a 2-axis machine. The tool will be parallel and independently controlled along third axis. It means that machine tool guided the cutting tool along a 2-D contour with only independent movement specified along the third axis. The Z-axis control plane is parallel to the XY plane.

2.2 Configuration of 2.5-axis machine tool

Figure 7.1.4 Axes in 2.5-axis machine tool

In this type of machine tool, the tool can be controlled to follow an *inclined* Z-axis control plane and it is termed as 2.5-axis machine tool. Figure 7.1.4 explains the axes system in 2.5-axis machine tool.

2.3 Configuration of 3-axis and multiple axis machine tool

Figure 7.1.5 3-axis machine tool

In these CNC machine tools, the tool is controlled along the three axes (X, Y, and Z) simultaneously, but the tool orientation doesn't change with the tool motion as shown in Figure 7.1.5.

If the tool axis orientation varies with the tool motion in 3 dimension space, 3-axis machine gets converted into multi-axis orientation machine (4-, 5-, or 6-axis). Figure 7.1.6 shows the schematic of tool motion in a multi-axis CNC machine tool.

Figure 7.1.6 Multiple axes machine tool

3. CNC program structure

There are four basic terms used in CNC programming. These are a follows:

Character -> Word -> Block -> Program

- Character is the smallest unit of CNC program. It can have Digit / Letter / Symbol.
- Word is a combination of alpha-numerical characters. This creates a single instruction to the CNC machine. Each word begins with a capital letter, followed by a numeral. These are used to represent axes positions, federate, speed, preparatory commands, and miscellaneous functions.
- A program block may contain multiple words, sequenced in a logical order of processing.
- The program comprises of multiple lines of instructions, 'blocks' which will be executed by the machine control unit (MCU).

Figure 7.1.7 shows a sample CNC program. It has basically three sections viz. initial commands section; main section and end commands section. In the initial commands section, the program number, its ID, initial safety preparatory codes such as 'cancel all the activated cycles by previous program' are to be specified.

In the main section, commands/instructions related the machine tool axes movements, tool change etc. are to be mentioned. At the end, the commands instructing cancellation of cycles, homing the tool and program end are to be provided.

% OO012 (Sample program structure for demonstration) N10 G21 N20 G40 G80 G49 N30 T01 N40 M06	<pre>//% symbol //Program number and ID //Program description //Units setting //Initial commands //Tool TO1 in waiting position //replace present tool at spindle by TO1</pre>
N100 G01 X20.0 Y34.0 N110 Y100.0 N120 G00 X100.0 N130 G01 Y20.0	//Linear interpolation //Linear interpolation //Linear interpolation: rapid mode //Linear interpolation at given feed rate
N200 G80 Z40.0 M09 N210 G28 Z40.0 M05 N220 G28 X Y N240 M30 %	//Cycle cancel //Home in z only //Home in XY only //End of program //Stop code

Figure 7.1.7 Sample CNC program.

The address G identifies a preparatory command, often called G-code. This is used to preset or to prepare the control system to a certain desired condition or to a certain mode or a state of operation. For example G01 presets linear interpolation at given feed but doesnot move any axis.

The address M in a CNC program specifies miscellaneous function. It is also called as machine function. These functions instruct the machine tool for various operations such as: spindle rotation, gear range change, automatic tool change, coolant operation, etc.

The G and M codes are controller manufacturers' specific. In this course, we will be following the G and M codes used for FANUC, Japan controller. Other controllers such as SINUMERIC, MITSUBHISHI etc. are also being used in CNC technology.

It is suggested to the readers to study the following G and M codes for milling and turning operations. Programming exercises will be carried out in the next lectures.

Module 7: CNC Programming and Industrial Robotics Lecture 2

CNC programming: Drilling operations

In this lecture we will learn how to write a part program to manufacture drilled holes. Let us take an exercise and study the various preparatory and miscellaneous functions associated with the problem.

Exercise:

Write an efficient CNC part program to drill 35 holes of diameter of 0.5 inch each in a machine component as shown in the figure 7.2.1. The raw material to be employed is mild steel plate of 0.4 inch thickness. Explain the important functions used in the CNC code.

Figure 7.2.1 A component to be machined (drilled)

Solution:

Based on the G and M code discussed in the last lecture, the CNC part program for FANUC controller can be written as follows:

Block 1		%
2		O0001
3	N10	G20
4	N20	G17 G40 G80 G49 G90
5	N30	G92 X Y Z
6	N40	M06 T01
7	N50	G00 X1.7 Y2.4 S900 M03
8	N60	G43 Z1.0 H01 M08
9	N70	G99 G81 R0.1 Z-0.4 F3.0
10	N80	G91 Y2.1 K6 (L6)
11	N90	X1.8
12	N100	Y-2.1 K6 (L6)
13	N110	X1.8
14	N120	Y2.1 K6 (L6)
15	N130	X1.8
16	N140	Y-2.1 K6 (L6)
17	N150	X1.8
18	N160	Y2.1 K6 (L6)
19	N170	G90 G80 M09
20	N180	G28 Z10 M05
21	N190	G28 X0 Y0
22	N200	M30
23		%

Let us now see the meaning and significance of each block of the program.

Block 1:

It indicates the start of the program.

Block 2:

It specifies the program number and ID. It is usually a alpha-numerical code and always start with an alphabet 'O'.

Block 3:

It sets the entry of dimensional units in Imperial format.

Block 4:

G17: It selects the plane of operation as X-Y plane

G40, G80, G49 are used to cancel all usual cycle that might have left in on-mode during the execution of last CNC code.

G90 selects the method of specifying dimensions between features as 'absolute'.

Block 5:

It sets the program zero on the work part. There are three major environments in programming that require an established mathematical relationship.

Machine: machine tool and control system Part: Workpiece + Drawing + material Tool: Holder + Cutting tool

Machine zero point:

It is also called as home position or machine reference point. It is the origin of a machine coordinate system. On all CNC machines, machine zero is located at the positive end of each axis travel range. Figure 7.2.2 shows the machining volume and various planes. The machine reference point is located at the end of positive ranges of X, Y and Z axes. Figure 7.2.3 and 7.2.4 provide the clear views of the machine reference point. Machine control unit (MCU) understands the dimensions provided with respect to the machine reference point. But the programmer is providing the dimensions on the drawings based on the local coordinate system i.e. part coordinate system.

Figure 7.2.2 machining volume and machine reference point

Figure 7.2.4 Front view of a vertical machine as viewed from front

A part ready for machining is located within the machine motion limits. Part reference point is commonly known as program zero or part zero. It is often selected on the part itself or on the fixtures. Figure 7.2.5 shows the part zero being set at the lower left corner on the top surface of the workpiece.

Figure 7.2.5 Part zero setting

The location coordinates of the program zero with respect to the machine reference zero must be communicated with the MCU so that the MCU will convert the part program in to required signals to control the machine tool. This can be achieved by using a Preparatory code 'G92'. The syntax of G92 is as follows:

G92 X... Y... Z...

To use this command the operator needs to obtain the distance travelled by the tool contact point (end-point) from the machine home position to the program zero position. This is carried out by touching the tool tip at the part zero point. The X, Y, Z distances will be noted from the machine display and further used along with G92 command. Figure 7.2.6 shows the tool tip distance from the program zero to machine zero along Z-direction.

Figure 7.2.6 Program zero setting

Block 6:

Replace the existing cutting tool with tool number 1.

Block 7:

Rapid travel of tool from home position to a reference position: hole with coordinates X1.7 Y2.4.

Switch on the spindle rotation with speed of about 900 rpm.

Block 8:

Approach to a safe position at Z = 1.0 rapidly. Meanwhile the tool length compensation is activated by using G43. It is used to communicate the length of tool registered in register number H01 to the MCU. Switch on the coolant flow.

Block 9:

In the given task, number of holes is to be drilled. For this purpose a special function or cycle is used. It is called as drilling canned cycle. Its syntax and meaning are shown below. The number of motions/action elements of drilling operations is specified only at once. Later only the locations of holes to be drilled are given to the MCU.

G81 – Drilling Cycle

	G98 (G99) G81 X Y R Z F
Step	Description of G81 Cycle
1	Rapid motion to XY position

1	Rapid motion to XY position
2	Rapid motion to <i>R-level</i>
3	Feed rate motion to Z-depth
4	Rapid retract to <i>initial level</i> (with G98) or Rapid retract to <i>R-level</i> (with G99)

Figure 7.2.7 Drilling canned cycle.

Block 10:

It suggests the distance of next location of the hole. It is also suggested to carry out the same drilling operation 6 times along the Y-axis with an increment of 2.1.

Block 11:

Drill the hole at increment of 1.8 along X-direction.

Block 12:

Carry out the drilling operation 6 times along the Y-axis with decrement of 2.1.

Block 13:

Drill the hole at increment of 1.8 along X-direction.

Block 14:

Carry out the drilling operation 6 times along the Y-axis with increment of 2.1.

Block 15:

Drill the hole at increment of 1.8 along X-direction.

Block 16:

Carry out the drilling operation 6 times along the Y-axis with decrement of 2.1.

Block 17:

Drill the hole at increment of 1.8 along X-direction.

Block 18:

Carry out the drilling operation 6 times along the Y-axis with increment of 2.1.

Block 19:

Cancel the canned cycle and switch off the coolant flow.

Block 20:

Stop the spindle and go to safe position along Z direction at 0.0.

Block 21:

Go to home position via X=0 and Y=0.

Block 22:

Stop the program from execution.

Block 23:

End the program.

Module 7: CNC Programming and Industrial Robotics

Lecture 3

CNC programming: Milling operations

In this lecture we will learn to write part program for contouring operations being carried out on a CNC milling machine. Let us take an exercise:

Figure 7.3.1 shows the final profile required to be finish-contoured and the holes to be drilled by using a CNC Vertical Machining Center. Write an EFFICIENT CNC part program for the same. Assume the finishing allowance of about 2 mm.

Figure 7.3.1 A component to machined on a vertical machining center (VMC)

After studying the required part geometry and features the following main program and its sub-program are prepared.

Operation no.	Operation	Tool name	Tool number	Length register	Diameter register
				number	number
1	Contour	End-mill	T01	H01	D01
	finishing				
2	Drilling of dia.	End-mill	T01	H01	D01
	6 mm holes				
3	Drilling of dia.	Drill bit	T02	H02	D02
	16 mm holes				

MAIN PROGRAM:

Bl

lock 1		%
2		O0001
3	N10	G21
4	N20	G40 G80 G49 G90
5	N30	G92 X Y Z
6	N40	M06 T01
7	N50	G00 X-20 Y-20
8	N60	G43 Z10 H01 M08
9	N70	M03 S1000
10	N80	G01 Z-20 F50
11	N90	G41 X0 D01 F25
12	N100	Y110
13	N110	G02 X15 Y125
14	N120	G01 X55
15	N130	Y115
16	N140	X95
17	N150	Y125
18	N160	X125
19	N170	G03 X150 Y100
20	N180	G01 Y35
21	N190	X135 Y0
22	N200	X-20
23	N210	G00 Z10
24	N220	X25 Y40
25	N230	G99 G81 R10 Z-20 F30
26	N240	M98 P0002
27	N250	G90 X25 Y100
28	N260	M98 P0002
29	N270	G90 X125 Y70
30	N280	M98 P1002
31	N290	G80 M09
32	N300	G28 Z10 M05
33	N310	G28 X0 Y0
34	N320	M06 T02
35	N330	G00 X75 Y30
36	N340	G43 Z10 H02 M08
37	N350	M03 S800
38	N360	G99 G81 R10 Z-20 F30
39	N370	Y60
40	N380	Y90
41	N390	G80 M09
42	N400	G28 Z10 M05
43	N410	G28 X0 Y0
44	N420	M30
45		%

SUB-PROGRAM

Block 1

: 1		%
2		O0002
3	N10	G91 X15
4	N20	X-15 Y15
5	N30	X-15 Y-15
6	N40	X15 Y-15
7	N50	M99
8		%

Let us now see the meaning and significance of each block of the main program and its sub-program. Above programs have been prepared based on the process plan shown in Table 7.6.1.

Block 1 to 5: Preparatory instructions as discussed in the last lecture

Block 6 to 8: Selection and change of tool as T01; go to a safe position.

Block 9: Spindle on

Block 10: Approach the depth at the given feed.

Block 11: Ramp-on: approach the workpiece with cutter radius compensation towards left. In this work we are programming the contour points. MCU will automatically finds out the cutter location points and accordingly he guides the cutting tool in the machine volume. CNC milling may have external machining such as contouring/contour finishing or internal machining such pocket milling/contouring as shown in Figure 7.3.2. In such cases the programmer has to specify the cutter radius offset direction by using G41/G42 commands as shown in Figure 7.3.3. Absence of these commands leads to inaccurate machining. The application of cutter radius compensation also depends upon type of milling operation being carried out. During Climb milling G41 is to be applied and for Up milling, G42 is to be used (see figure 7.3.4)

Figure 7.3.2 Tool motions in milling operations.

Figure 7.3.3 Cutter radius compensation in milling

Figure 7.3.4 Cutter radius compensation in milling operations.

Block 12 to 21: the contour of the work part is programmed by using linear (G01) and circular (G02/G03) interpolation commands. These commands once activated then need not to be repeated in the subsequent blocks until a required change in them to be incorporated. These are called as MODAL commands.

Block 22: Ramp-off: the cutting tool will completely come out of the contour.

Block 23 and 24: Cutting tool will approach the next operation i.e. drilling three similar patterns of holes.

Block 25: Drilling canned cycle is activated.

Block 26 to 30: A sub-program O0002 is called-on for execution. It is an advanced option used in CNC programming. This eliminates repetition of blocks for machining of similar features at various locations. It makes the program compact and enhances the efficiency of programming.

Program O0002 facilitates the locations of the holes which are mentioned with incremental dimensions. This program can be executed to drill the shown pattern of holes anywhere on the work part.

Block 31: Cancel the canned cycle and switch-off the coolant flow.

Block 32 to 33: Go to home position safely and turn-off the spindle.

Block 34 to 37: Make the Tool 2 ready for drilling dia. 16 mm hole; change the tool; and turn-on the spindle as well as coolant.

Block 38 to 40: Execute the drilling canned cycle at three locations.

Block 41 to 45: Send the cutting tool to home position safely; switch-off the spindle as well as coolant; and stop the program.

Module 7: CNC Programming and Industrial Robotics

Lecture 4

CNC programming: Turning operations

In this lecture we will learn to write part program for turning operations being carried out on a CNC turning center. Let us take an exercise:

Figure 7.4.1 shows the final profile to be generated on a bar stock by using a CNC turning center.

Figure 7.4.1 A component to be turned.

Block 1		%
2		O0004
3	N10	G21
4	N20	G40 G90
5	N30	G54 X Z
6	N40	T0100 M42
7	N50	G96 S450 M03
8	N60	G00 G41 X72 Z0 T0101 M08
9	N70	G01 X0
10	N80	G00 Z5
11	N90	G42 X72
12	N100	G71 U1 R3
13	N110	G71 P120 Q190 U1 W1 F0.05
14	N120	G00 X0
15	N130	G01 Z0
16	N140	G03 X20 Z-20
17	N150	G01 Z-45
18	N160	X40 Z-80
19	N170	Z-105
20	N180	G02 X70 Z-120
21	N190	G01 X75
22	N200	G00 X100 Z20
23	N210	G70 P120 Q190 F0.03
24	N220	G00 G40 X100 Z20 T0100
25	N230	M09
26	N240	M30
27		0/0

After studying the required part geometry and features, the main program can be written as follows.

Let us now see the meaning and significance of each block of the program.

Block 1 to 4: Preparatory functions and commands.

Block 5: In CNC turning, only two axes viz. X and Z are used. X axis is along the radius of work part, whereas Z axis is along the length of the work part. Figure 7.4.2 shows the axes system used in CNC turning centers. The program zero will be set by using G54 command. The program zero is assumed to be located at the tip of work contour as shown in Figure 7.4.1.

Figure 7.4.2 Axes system used in CNC turning center

Block 6: In turning programming the Tool is designated by an alphabet 'T' and four numerals. Out of the four numerals, first two indicates the tool number and the last signifies the wear offset number. In this block the tool number 1 is selected.

Block 7: G96 command maintains the constant surface speed during the reduction of diameter by using CNC turning. For efficient and proper cutting, it is essential to maintain a constant cutting speed (along the surface). It can be obtained by varying the spindle RPM according to the change in the diameter during the turning operation. Figure 7.4.3 shows that how the RPM of the spindle should be increased to maintain the constant surface speed.

Figure 7.4.3 Constant surface speed control

Block 8: Prepare for the facing operation. During this stage, activate the tool nose radius compensation towards left when the tool moves along the radial direction (X). Also activate the wear compensation as per the offset value provided at wear offset register 01. Figure 7.4.4 shows the conventions to be followed for tool nose radius compensations in turning operations.

Figure 7.4.4 Tool nose radius compensation

Block 9: Carry out the facing operation.

Block 10 and 11: Go to safe position X 72 and Z 5. During this movement activate the tool nose radius compensation towards right side of the contour.

Block 12 and 13: These blocks specify the stock removal cycle G71 for external roughing. This will obtain the required shape with an allowance kept for finishing operation. The syntax of this cycle command is as follows:

G71 U... R... G71 P... Q... U... W... F... S...

First block:

U = Depth of roughing cut

R = Amount of retract from each cut

Second block:

P = First block number of finishing contour

- Q = Last block number of finishing contour
- U = Stock amount for finishing on the X-axis diameter

W = Stock left for finishing on the Z-axis

- F = Cutting feed-rate (in/rev or m/min) between P block and Q block
- S = Spindle speed (ft/min or m/min) between P block and Q block

The points P and Q on the contour of the workpart can be defined as shown in the figure 7.4.5

Figure 7.4.5 G71 cycle: P and Q points.

Block 14 to 21: these blocks provide the coordinates of various points on the contour of the work part.

Block 22: Go to a safe position.

Block 23: In this block the finishing cycle G70 will be executed. The syntax for this cycle is as follows:

where,

P = First block number of the finishing contour

- Q = Last block number of the finishing contour
- F = Cutting feed rate (in/rev or mm/rev)
- S = Spindle speed (ft/min or m/min)

Block 24 to 27: Go to safe potion (home); cancel all activated cycles and stops the program.

Module 7: CNC Programming and Industrial Robotics

Lecture 5

Industrial robotics-1

1. Introduction

An industrial robot is a general-purpose, programmable machine. It possesses some anthropomorphic characteristics, i.e. human-like characteristics that resemble the human physical structure. The robots also respond to sensory signals in a manner that is similar to humans. Anthropomorphic characteristics such as mechanical arms are used for various industry tasks. Sensory perceptive devices such as sensors allow the robots to communicate and interact with other machines and to take simple decisions. The general commercial and technological advantages of robots are listed below:

- Robots are good substitutes to the human beings in hazardous or uncomfortable work environments.
- A robot performs its work cycle with a consistency and repeatability which is difficult for human beings to attain over a long period of continuous working.
- Robots can be reprogrammed. When the production run of the current task is completed, a robot can be reprogrammed and equipped with the necessary tooling to perform an altogether different task.
- Robots can be connected to the computer systems and other robotics systems. Nowadays robots can be controlled with wire-less control technologies. This has enhanced the productivity and efficiency of automation industry.

2. Robot anatomy and related attributes

2.1 Joints and Links

The manipulator of an industrial robot consists of a series of joints and links. Robot anatomy deals with the study of different joints and links and other aspects of the manipulator's physical construction. A robotic joint provides relative motion between two links of the robot. Each joint, or axis, provides a certain degree-of-freedom (dof) of motion. In most of the cases, only one degree-offreedom is associated with each joint. Therefore the robot's complexity can be classified according to the total number of degrees-of-freedom they possess.

Each joint is connected to two links, an input link and an output link. Joint provides controlled relative movement between the input link and output link. A robotic link is the rigid component of the robot manipulator. Most of the robots

are mounted upon a stationary base, such as the floor. From this base, a joint-link numbering scheme may be recognized as shown in Figure 7.5.1. The robotic base and its connection to the first joint are termed as link-0. The first joint in the sequence is joint-1. Link-0 is the input link for joint-1, while the output link from joint-1 is link-1—which leads to joint-2. Thus link 1 is, simultaneously, the output link for joint-1 and the input link for joint-2. This joint-link-numbering scheme is further followed for all joints and links in the robotic systems.

Fig. 7.5.1 Joint-link scheme for robot manipulator

Nearly all industrial robots have mechanical joints that can be classified into following five types as shown in Figure 7.5.2.

Fig. 7.5.2 Types of Joints

a) Linear joint (type L-joint)

The relative movement between the input link and the output link is a translational sliding motion, with the axes of the two links being parallel.

b) Orthogonal joint (type U-joint)

This is also a translational sliding motion, but the input and output links are perpendicular to each other during the move.

c) Rotational joint (type R-joint)

This type provides rotational relative motion, with the axis of rotation perpendicular to the axes of the input and output links.

d) Twisting joint (type T-joint)

This joint also involves rotary motion, but the axis or rotation is parallel to the axes of the two links.

e) Revolving joint (type V-joint, V from the "v" in revolving)

In this type, axis of input link is parallel to the axis of rotation of the joint. However the axis of the output link is perpendicular to the axis of rotation.

2.2 Common Robot Configurations

Basically the robot manipulator has two parts viz. a body-and-arm assembly with three degrees-of-freedom; and a wrist assembly with two or three degrees-of-freedom.

For body-and-arm configurations, different combinations of joint types are possible for a three-degree-of-freedom robot manipulator. Five common body-and-arm configurations are outlined in figure 7.5.3.

Fig.7.5.3 Common Body-and-Arm configurations

(a) Polar configuration

It consists of a sliding arm L-joint, actuated relative to the body, which rotates around both a vertical axis (T-joint), and horizontal axis (R-joint).

(b) Cylindrical configuration

It consists of a vertical column. An arm assembly is moved up or down relative to the vertical column. The arm can be moved in and out relative to the axis of the column. Common configuration is to use a T-joint to rotate the column about its axis. An L-joint is used to move the arm assembly vertically along the column, while an O-joint is used to achieve radial movement of the arm.

(c) Cartesian co-ordinate robot

It is also known as rectilinear robot and x-y-z robot. It consists of three sliding joints, two of which are orthogonal O-joints.

(d) Jointed-arm robot

It is similar to the configuration of a human arm. It consists of a vertical column that swivels about the base using a T-joint. Shoulder joint (R-joint) is located at the top of the column. The output link is an elbow joint (another R joint).

(e) SCARA

Its full form is 'Selective Compliance Assembly Robot Arm'. It is similar in construction to the jointer-arm robot, except the shoulder and elbow rotational axes are vertical. It means that the arm is very rigid in the vertical direction, but compliant in the horizontal direction.

Robot wrist assemblies consist of either two or three degrees-of-freedom. A typical three-degree-of-freedom wrist joint is depicted in Figure 7.5.4. The roll joint is accomplished by use of a T-joint. The pitch joint is achieved by recourse to an R-joint. And the yaw joint, a right-and-left motion, is gained by deploying a second R-joint.

Fig. 7.5.4: Robotic wrist joint

The SCARA body-and-arm configuration typically does not use a separate wrist assembly. Its usual operative environment is for insertion-type assembly operations where wrist joints are unnecessary. The other four body-and-arm configurations more-or-less follow the wrist-joint configuration by deploying various combinations of rotary joints viz. type R and T.

2.3 Drive systems

Basically three types of drive systems are commonly used to actuate robotic joints. These are electric, hydraulic, and pneumatic drives. Electric motors are the prime movers in robots. Servo-motors or steeper motors are widely used in robotics. Hydraulic and pneumatic systems such as piston-cylinder systems, rotary vane actuators are used to accomplish linear motions, and rotary motions of joints respectively.

Pneumatic drive is regularly used for smaller, simpler robotic applications; whereas electric and hydraulic drives may be found applications on more sophisticated industrial robots. Due to the advancement in electric motor technology made in recent years, electric drives are generally favored in commercial applications. They also have compatibility to computing systems. Hydraulic systems, although not as flexible as electrical drives, are generally used where larger speeds are required. They are generally employed to carry out heavy duty operations using robots.

The combination of drive system, sensors, and feedback control system determines the dynamic response characteristics of the manipulator. Speed in robotic terms refers to the absolute velocity of the manipulator at its end-of-arm. It can be programmed into the work cycle so that different portions of the cycle are carried out at different velocities. Acceleration and deceleration control are also important factors, especially in a confined work envelope. The robot's ability to control the switching between velocities is a key determinant of the manipulator's capabilities. Other key determinants are the weight (mass) of the object being manipulated, and the precision that is required to locate and position the object correctly. All of these determinants are gathered under the term 'speed of response', which is defined as the time required for the manipulator to move from one point in space to the next. Speed of response influences the robot's cycle time, which in turn affects the production rate that can be achieved.

Stability refers to the amount of overshoot and oscillation that occurs in the robot motion at the end-of-arm as it attempts to move to the next programmed location. More oscillations in the robotic motion lead to less stability in the robotic manipulator. However, greater stability may produce a robotic system with slower response times.

Load carrying capacity is also an important factor. It is determined by weight of the gripper used to grasp the objects. A heavy gripper puts a higher load upon the robotic manipulator in addition to the object mass. Commercial robots can carry loads of up to 900 kg, while medium-sized industrial robots may have capacities of up to 45kg.

Module 7: CNC Programming and Industrial Robotics Lecture 6 Industrial robotics-2

1. Robot Control Systems

To perform as per the program instructions, the joint movements an industrial robot must accurately be controlled. Micro-processor-based controllers are used to control the robots. Different types of control that are being used in robotics are given as follows.

(a) Limited Sequence Control

It is an elementary control type. It is used for simple motion cycles, such as pickand-place operations. It is implemented by fixing limits or mechanical stops for each joint and sequencing the movement of joints to accomplish operation. Feedback loops may be used to inform the controller that the action has been performed, so that the program can move to the next step. Precision of such control system is less. It is generally used in pneumatically driven robots.

(b) Playback with Point-to-Point Control

Playback control uses a controller with memory to record motion sequences in a work cycle, as well as associated locations and other parameters, and then plays back the work cycle during program execution. Point-to-point control means individual robot positions are recorded in the memory. These positions include both mechanical stops for each joint, and the set of values that represent locations in the range of each joint. Feedback control is used to confirm that the individual joints achieve the specified locations in the program.

(c) Playback with Continuous Path Control

Continuous path control refers to a control system capable of continuous simultaneous control of two or more axes. The following advantages are noted with this type of playback control: greater storage capacity—the number of locations that can be stored is greater than in point-to-point; and interpolation calculations may be used, especially linear and circular interpolations.

(d) Intelligent Control

An intelligent robot exhibits behavior that makes it seems to be intelligent. For example, it may have capacity to interact with its ambient surroundings; decisionmaking capability; ability to communicate with humans; ability to carry out computational analysis during the work cycle; and responsiveness to advanced sensor inputs. They may also possess the playback facilities. However it requires a high level of computer control, and an advanced programming language to input the decision-making logic and other 'intelligence' into the memory.

2. End Effectors

An end effector is usually attached to the robot's wrist, and it allows the robot to accomplish a specific task. This means that end effectors are generally custom-engineered and fabricated for each different operation. There are two general categories of end effectors viz. grippers and tools.

Grippers grasp and manipulate the objects during the work cycle. Typically objects that grasped are the work parts which need to be loaded or unloaded from one station to another. Grippers may be custom-designed to suit the physical specifications of work parts. Various end-effectors, grippers are summarized in Table 7.6.1.

Туре	Description
Mechanical gripper	Two or more fingers which are actuated by robot controller
	to open and close on a workpart.
Vacuum gripper	Suction cups are used to hold flat objects.
Magnetized	Based on the principle of magnetism. These are used for
devices	holding ferrous workparts.
Adhesive devices	By deploying adhesive substances, these are used to hold
	flexible materials, such as fabric.
Simple mechanical	Hooks and scoops.
devices	
Dual grippers	It is a mechanical gripper with two gripping devices in one
	end-effecter. It is used for machine loading and unloading. It
	reduces cycle time per part by gripping two workparts at the
	same time.
Interchangeable	Mechanical gripper with an arrangement to have modular
fingers	fingers to accommodate different sizes workpart.
Sensory feedback	Mechanical gripper with sensory feedback capabilities in the
fingers	fingers to aid locating the workpart; and to determine correct
	grip force to apply (for fragile workparts).
Multiple fingered	Mechanical gripper as per the general anatomy of human
grippers	hand.
Standard grippers	Mechanical grippers that are commercially available, thus
	reducing the need to custom-design a gripper for separate
	robot applications.

Table 7	7.6.1	End-Effectors:	Grinners
I abic /	.0.1	Linu-Lincetors.	Grippers

The robot end effecter may also use tools. Tools are used to perform processing operations on the workpart. Typically the robot uses the tool relative to a stationary or slowly-moving object. For example, spot welding, arc welding, and spray painting robots use a tool for processing the respective operation. Tools also can be mounted at robotic manipulator spindle to carry out machining work such as drilling, routing, grinding, etc.

3. Sensors in Robotics

There are generally two categories of sensors used in robotics. These are sensors for internal purposes and for external purposes. Internal sensors are used to monitor and control the various joints of the robot. They form a feedback control loop with the robot controller. Examples of internal sensors include potentiometers and optical encoders, while tachometers of various types are deployed to control the speed of the robot arm.

External sensors are external to the robot itself, and are used when we wish to control the operations of the robot. External sensors are simple devices, such as limit switches that determine whether a part has been positioned properly, or whether a part is ready to be picked up from an unloading bay.

Various sensors used in robotics are outlined in Table 7.6.2.

Sensor Type	Description
Tactile	Used to determine whether contact is made between sensor and
sensors	another object
	Touch sensors: indicates the contact
	Force sensors: indicates the magnitude of force with the object
Proximity	Used to determine how close an object is to the sensor. Also called a
sensors	range sensor.
Optical	Photocells and other photometric devices that are used to detect the
sensors	presence or absence of objects. Often used in conjunction with
	proximity sensors.
Machine	Used in robotics for inspection, parts identification, guidance, etc.
vision	
Others	Measurement of temperature, fluid pressure, fluid flow, electrical
	voltage, current, and other physical properties.

Table 7.6.2 Sensor technologies for robotics

Fig. 7.6.1 Applications of robots in industry and manufacturing

Figure 7.6.1 shows a diagram which depicts an overview of applications of robots in manufacturing. The general characteristics of industrial work situations that tend to promote the substitution of robots for human labor are outlined in Table 7.6.3.

Situation	Description		
Hazardous work	In situations where the work environment is unsafe,		
environment for	unhealthy, uncomfortable, or otherwise unpleasant for		
humans	humans, robot application may be considered.		
Repetitive work cycle	If the sequence of elements in the work cycle is the		
-	same, and the elements consist of relatively simple		
	motions, robots usually perform the work with greater		
	consistency and repeatability than humans.		
Difficult handling for	If the task requires the use of heavy or difficult-to-		
humans	handle parts or tools for humans, robots may be able to		
	perform the operation more efficiently.		
Multi-shift operation	A robot can replace two or three workers at a time in		
	second or third shifts, thus they can provide a faster		
	financial payback.		
Infrequent	Robots' use is justified for long production runs where		
changeovers	there are infrequent changeovers, as opposed to batch or		
C	job shop production where changeovers are more		
	frequent.		
Part position and	Robots generally don't have vision capabilities, which		
orientation are	means parts must be precisely placed and oriented for		
established in the work	successful robotic operations.		
cell			

4.1 Material Handling Applications

Robots are mainly used in three types of applications: material handling; processing operations; and assembly and inspection. In material handling, robots move parts between various locations by means of a gripper type end effector. Material handling activity can be sub divided into material transfer and machine loading and/or unloading. These are described in Table 7.6.4.

Table 7.6.4: Material handling applications

Application	Description
Material transfer	 Main purpose is to pick up parts at one location and place them at a new location. Part re-orientation may be accomplished during the transfer. The most basic application is a pick-and-place procedure, by a low-technology robot (often pneumatic), using only up to 4 joints. More complex is palletizing, where robots retrieve objects from one location, and deposit them on a pallet in a specific area of the pallet, thus the deposit location is slightly different for each object transferred. The robot must be able to compute the correct deposit location via powered lead- through method, or by dimensional analysis. Other applications of material transfer include de- palletizing, stacking, and insertion operations.
Machine loading and/or unloading	 Primary aim is to transfer parts into or out-of a production machine. There are three classes to consider: machine loading—where the robot loads the machine machine unloading—where the robot unloads the machine machine loading and unloading—where the robot performs both actions Used in die casting, plastic molding, metal machining operations, forging, press-working, and heat treating operations.

4.2 Processing Operations

In processing operations, the robot performs some processing activities such as grinding, milling, etc. on the workpart. The end effector is equipped with the specialized tool required for the respective process. The tool is moved relative to the surface of the workpart. Table 7.6.5 outlines the examples of various processing operations that deploy robots.

Table 7.6.5: Robotic process operations

Process	Description		
Spot	Metal joining process in which two sheet metal parts are fused		
Welding	together at localized points of contact by the deployment of two		
	electrodes that squeeze the metal together and apply an electric		
	current. The electrodes constitute the spot welding gun, which is the		
	end effector tool of the welding robot.		
Arc	Metal joining process that utilizes a continuous rather than contact		
Welding	welding point process, in the same way as above. Again the end		
	effector is the electrodes used to achieve the welding arc. The robot		
	must use continuous path control, and a jointed arm robot consisting		
	of six joints is frequently used.		
Spray	Spray coating directs a spray gun at the object to be coated. Paint or		
Coating	some other fluid flows through the nozzle of the spray gun, which is		
	the end effector, and is dispersed and applied over the surface of the		
	object. Again the robot must use continuous path control, and is		
	typically programmed using manual lead-through. Jointed arm robots		
	seem to be the most common anatomy for this application.		
Other	Other applications include: drilling, routing, and other machining		
applications	processes; grinding, wire brushing, and similar operations; waterjet		
	cutting; and laser cutting.		

5 Robot programming

A robot program is a path in the space that to be followed by the manipulator, combined with peripheral actions that support the work cycle. To program a robot, specific commands are entered into the robot's controller memory, and these actions may be performed in a number of ways. Limited sequence robot programming is carried out when limit switches and mechanical stops are set to control the end-points of its motions. A sequencing device controls the occurrence of motions, which in turn controls the movement of the joints that completes the motion cycle.

5.1 Lead-through programming

For industrial robots with digital computers as controllers, three programming methods can be distinguished. These are lead-through programming; computer-like robot programming languages; and off-line programming. Lead-through methodologies, and associated programming methods, are outlined in Table 7.6.6.

Mathad	Description		
Lead through			
Lead-through	• Task is taught to the robot by manually moving the		
programming	manipulator through the required motion cycle, and		
	simultaneously entering the program into the controller		
	memory for playback.		
	• Two methods are used for teaching: powered lead-through;		
	and manual lead-through.		
Motion	10tion • To overcome the difficulties of co-coordinating individual		
programming	joints associated with lead-through programming, two		
	mechanical methods can be used: the world-co-ordinate		
	system—whereby the origin and axes are defined relative to		
	the robot base: and the tool-co-ordinate system—whereby the		
	alignment of the axis system is defined relative to the		
	orientation of the wrist facenlate		
	• These methods are typically used with Cartesian co-ordinate		
	robots, and not for robots with rotational joints.		
	• Robotic types with rotational joints rely on interpolation		
	processes to gain straight line motion.		
	• Two types of interpolation processes are used: straight line		
	interpolation—where the control computer calculates the		
	necessary points in space that the manipulator must move		
	through to connect two points; and joint interpolation—where		
	joints are moved simultaneously at their own constant speed		
	such that all joints start/stop at the same time.		

5.2 Computer-like programming

These are computer-like languages which use on-line/off-line methods of programming. The advantages of textual programming over its lead-through counterpart include:

- The use of enhanced sensor capabilities, including the use of analogue and digital inputs
- Improved output capabilities for controlling external equipment
- Extended program logic, beyond lead-through capabilities
- Advanced computation and data processing capabilities
- Communications with other computer systems

Table 7.1.1	G code for	Milling and	Turning (Operations
-------------	------------	-------------	-----------	------------

G00	Rapid Linear Positioning	G55	Work Coordinate System 2 Selection
G01	Linear Feed Interpolation	G56	Work Coordinate System 3 Selection
G02	CW Circular Interpolation	G57	Work Coordinate System 4 Selection
G03	CCW Circular Interpolation	G58	Work Coordinate System 5 Selection
G04	Dwell	G59	Work Coordinate System 6 Selection
G07	Imaginary Axis Designation	G60	Single Direction Positioning
G09	Exact Stop	G61	Exact Stop Mode
G10	Offset Value Setting	G64	Cutting Mode
G17	XY Plane Selection	G65	Custom Macro Simple Call
G18	ZX Plane Selection	G66	Custom Macro Modal Call
G19	YZ plane Selection	G67	Custom Macro Modal Call Cancel
G20	Input In Inches	G68	Coordinate System Rotation On
G21	Input In Millimeters	G69	Coordinate System Rotation Off
G22	Stored Stroke Limit On	G73	Peck Drilling Cycle
G23	Stored Stroke Limit Off	G74	Counter Tapping Cycle
G27	Reference Point Return Check	G76	Fine Boring
G28	Return To Reference Point	G80	Canned Cycle Cancel
G29	Return From Reference Point	G81	Drilling Cycle, Spot Boring
G30	Return To 2nd, 3rd and 4th Ref.	G82	Drilling Cycle, Counter Boring
Point		G83	Peck Drilling Cycle
G31	Skip Cutting	G84	Tapping Cycle
G33	Thread Cutting	G85	Boring Cycle
G40	Cutter Compensation Cancel	G86	Boring Cycle
G41	Cutter Compensation Left	G87	Back Boring Cycle
G42	Cutter Compensation Right	G88	Boring Cycle
G43	Tool Length Compensation +	G89	Boring Cycle
Direction		G90	Absolute Programming
G44 Tool Length Compensation -		G91	Incremental Programming
Direction		G92	Programming Of Absolute Zero
G45	Tool Offset Increase	G94	Feed Per Minute
G46	Tool Offset Double	G95	Feed Per Revolution
G47	Tool Offset Double Increase	G96	Constant Surface Speed Control
G48	Tool Offset Double Decrease	G97	Constant Surface Speed Control
G49	Tool Length Compensation Cancel	Cancel	
G50	Scaling Off	G98	Return To Initial Point In Canned
G51	Scaling On	Cycles	
G52	Local Coordinate System Setting	G99	Return To R Point In Canned Cycles
G54	Work Coordinate System 1 Selection		

M00 Program Stop	
M01 Optional Stop	
M02 End of Program	
M03 Spindle On CW	
M04 Spindle On CCW	
M05 Spindle Stop	
M06 Tool Change	
M07 Mist Coolant On	
M08 Flood Coolant On	
M09 Coolant Off	
M19 Spindle Orientation On	
M20 Spindle Orientation Off	
M21 Tool Magazine Right	
M22 Tool Magazine Left	
M23 Tool Magazine Up	
M24 Tool Magazine Down	
M25 Tool Clamp	
M26 Tool Unclamp	
M27 Clutch Neutral On	
M28 Clutch Neutral Off	
M30 End Program, Stop and Re	wind
M98 Call Sub Program	
M99 End Sub Program	

Γ

Table 7.1.3 M code for Turning operations

G00 G01 G02 G03 G04	Rapid Linear Positioning Linear Feed Interpolation CW Circular Interpolation CCW Circular Interpolation Dwell
G07	Hypothetical Axis Interpolation, Sine Curve
G09	Exact Stop
G10 G20	Offset Value Setting
G20 G21	Input In Millimeters
G21	Stored Stroke Limit On
G23	Stored Stroke Limit Off
G27	Reference Point Return Check
G28	Return To Reference Point
G29	Return From Reference Point
G30	Return To 2nd, 3rd, and 4th Reference Point
G31	Skip Cutting
G32	Inread Cutting
G34 G36	Automatic Tool Comp. X
G30 G37	Automatic Tool Comp. 7
G40	Tool Nose Rad. Comp. Cancel
G41	Tool Nose Radius Comp. Left
G42	Tool Nose Radius Comp. Right
G50	Programming Of Absolute Zero
G65	User Macro Simple Call
G66	User Macro Modal Call
G67	User Macro Modal Call Cancel
G68	Mirror Image For Double Turrets On
G69	Mirror Image For Double Turrets Off
G70 C71	Finishing Cycle
G71 G72	Stock Removal, Furning
G73	Repeat Pattern
G74	Peck Drilling 7 Axis
G75	Grooving, X Axis
G76	Thread Cutting Cycle
G90	Cutting Cycle A
G92	Thread Cutting Cycle
G94	Cutting Cycle B
G96	Constant Surface Speed Control
G97	Constant Surface Speed Cancel
G98	
C00 G33	Absolute Programming
G91	Incremental Programming
001	inoromoniar rogramming